Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Not curated in GtoImmuPdb
Target id: 548
Nomenclature: Kv3.1
Family: Voltage-gated potassium channels (Kv)
Annotation status:
Annotated and reviewed, awaiting update
» Email us
Gene and Protein Information ![]() |
|||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 6 | 1 | 511 | 11p15.1 | KCNC1 | potassium voltage-gated channel subfamily C member 1 | |
Mouse | 6 | 1 | 511 | 7 30.1 cM | Kcnc1 | potassium voltage gated channel, Shaw-related subfamily, member 1 | |
Rat | 6 | 1 | 585 | 1q22 | Kcnc1 | potassium voltage-gated channel subfamily C member 1 | 8 |
Database Links ![]() |
|
Alphafold | P48547 (Hs), P15388 (Mm), P25122 (Rn) |
ChEMBL Target | CHEMBL5529 (Hs), CHEMBL4105978 (Mm), CHEMBL2321617 (Rn) |
DrugBank Target | P48547 (Hs) |
Ensembl Gene | ENSG00000129159 (Hs), ENSMUSG00000058975 (Mm), ENSRNOG00000055401 (Rn) |
Entrez Gene | 3746 (Hs), 16502 (Mm), 25327 (Rn) |
Human Protein Atlas | ENSG00000129159 (Hs) |
KEGG Gene | hsa:3746 (Hs), mmu:16502 (Mm), rno:25327 (Rn) |
OMIM | 176258 (Hs) |
Pharos | P48547 (Hs) |
RefSeq Nucleotide | NM_004976 (Hs), NM_001112739 (Mm), NM_008421 (Mm), NM_139217 (Rn), NM_012856 (Rn) |
RefSeq Protein | NP_004967 (Hs), NP_032447 (Mm), NP_001106210 (Mm), NP_036988 (Rn), NP_631963 (Rn) |
UniProtKB | P48547 (Hs), P15388 (Mm), P25122 (Rn) |
Wikipedia | KCNC1 (Hs) |
Functional Characteristics ![]() |
|
KV |
Ion Selectivity and Conductance ![]() |
||||||
|
||||||
|
Voltage Dependence ![]() |
||||||||||||||||||||||
|
||||||||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Gating inhibitors ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Channel Blockers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Tissue Distribution ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Functional Assays ![]() |
||||||||||
|
Physiological Functions ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression ![]() |
||||||||||
|
||||||||||
|
||||||||||
|
Phenotypes, Alleles and Disease Models ![]() |
Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology ![]() |
||||||||||||||||||||||||||||
|
Gene Expression and Pathophysiology ![]() |
||||||||||||
|
||||||||||||
|
||||||||||||
|
Biologically Significant Variants ![]() |
||||||||||||||
|
||||||||||||||
|
||||||||||||||
Biologically Significant Variant Comments | ||||||||||||||
Kv3.1a and Kv3.1b are differentially targeted to dendrites (Kv3.1a) and axons (Kv3.1b) [37]. Kv3.1b isoform is the most abundant and thus is the most studied isoform [9,22]. |
General Comments |
H-ras oncogene switches anterior pituitary derived cells (AtT20) to a more neuron-like phenotype in parallel with the induction of expression of Kv3.112. It is a member of the mammalian Shaw-related family. |
1. Choi BH, Choi JS, Yoon SH, Rhie DJ, Min DS, Jo YH, Kim MS, Hahn SJ. (2001) Effects of norfluoxetine, the major metabolite of fluoxetine, on the cloned neuronal potassium channel Kv3.1. Neuropharmacology, 41 (4): 443-53. [PMID:11543764]
2. Dallas ML, Atkinson L, Milligan CJ, Morris NP, Lewis DI, Deuchars SA, Deuchars J. (2005) Localization and function of the Kv3.1b subunit in the rat medulla oblongata: focus on the nucleus tractus solitarii. J Physiol (Lond.), 562 (Pt 3): 655-72. [PMID:15528247]
3. De Biasi M, Drewe JA, Kirsch GE, Brown AM. (1993) Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore. Biophys J, 65 (3): 1235-42. [PMID:8241404]
4. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?. Nature, 307 (5950): 465-8. [PMID:6320007]
5. Espinosa F, McMahon A, Chan E, Wang S, Ho CS, Heintz N, Joho RH. (2001) Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci, 21 (17): 6657-65. [PMID:11517255]
6. Felix R, Serrano CJ, Treviño CL, Muñoz-Garay C, Bravo A, Navarro A, Pacheco J, Tsutsumi V, Darszon A. (2002) Identification of distinct K+ channels in mouse spermatogenic cells and sperm. Zygote, 10 (2): 183-8. [PMID:12056459]
7. Grissmer S, Ghanshani S, Dethlefs B, McPherson JD, Wasmuth JJ, Gutman GA, Cahalan MD, Chandy KG. (1992) The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells. J Biol Chem, 267 (29): 20971-9. [PMID:1400413]
8. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol, 45 (6): 1227-34. [PMID:7517498]
9. Gu Y, Barry J, McDougel R, Terman D, Gu C. (2012) Alternative splicing regulates kv3.1 polarized targeting to adjust maximal spiking frequency. J Biol Chem, 287 (3): 1755-69. [PMID:22105078]
10. Hemmick LM, Perney TM, Flamm RE, Kaczmarek LK, Birnberg NC. (1992) Expression of the H-ras oncogene induces potassium conductance and neuron-specific potassium channel mRNAs in the AtT20 cell line. J Neurosci, 12 (6): 2007-14. [PMID:1607925]
11. Hernández-Pineda R, Chow A, Amarillo Y, Moreno H, Saganich M, Vega-Saenz de Miera EC, Hernández-Cruz A, Rudy B. (1999) Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus. J Neurophysiol, 82 (3): 1512-28. [PMID:10482766]
12. Ho CS, Grange RW, Joho RH. (1997) Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc Natl Acad Sci USA, 94 (4): 1533-8. [PMID:9037088]
13. Ishikawa T, Nakamura Y, Saitoh N, Li WB, Iwasaki S, Takahashi T. (2003) Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci, 23 (32): 10445-53. [PMID:14614103]
14. Joho RH, Marks GA, Espinosa F. (2006) Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms. Eur J Neurosci, 23 (6): 1567-74. [PMID:16553620]
15. Joho RH, Street C, Matsushita S, Knöpfel T. (2006) Behavioral motor dysfunction in Kv3-type potassium channel-deficient mice. Genes Brain Behav, 5 (6): 472-82. [PMID:16923152]
16. Jung DK, Lee SY, Kim D, Joo KM, Cha CI, Yang HS, Lee WB, Chung YH. (2005) Age-related changes in the distribution of Kv1.1 and Kv3.1 in rat cochlear nuclei. Neurol Res, 27 (4): 436-40. [PMID:15949244]
17. Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK. (1995) Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. J Neurophysiol, 74 (1): 207-17. [PMID:7472324]
18. Kirsch GE, Drewe JA. (1993) Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J Gen Physiol, 102 (5): 797-816. [PMID:8301258]
19. Klemic KG, Kirsch GE, Jones SW. (2001) U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys J, 81 (2): 814-26. [PMID:11463627]
20. Lenz S, Perney TM, Qin Y, Robbins E, Chesselet MF. (1994) GABA-ergic interneurons of the striatum express the Shaw-like potassium channel Kv3.1. Synapse, 18 (1): 55-66. [PMID:7825124]
21. Liu SJ, Kaczmarek LK. (1998) The expression of two splice variants of the Kv3.1 potassium channel gene is regulated by different signaling pathways. J Neurosci, 18 (8): 2881-90. [PMID:9526005]
22. Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R et al.. (1991) Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sci USA, 88 (9): 3932-6. [PMID:2023941]
23. Massengill JL, Smith MA, Son DI, O'Dowd DK. (1997) Differential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes. J Neurosci, 17 (9): 3136-47. [PMID:9096148]
24. McKay BE, Turner RW. (2004) Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells. Eur J Neurosci, 20 (3): 729-39. [PMID:15255983]
25. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R et al.. (2015) A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 47 (1): 39-46. [PMID:25401298]
26. Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R. (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res, 13 (3): 824-31. [PMID:17289873]
27. Perney TM, Marshall J, Martin KA, Hockfield S, Kaczmarek LK. (1992) Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol, 68 (3): 756-66. [PMID:1432046]
28. Plant LD, Boyle JP, Thomas NM, Hipkins NJ, Benedikz E, Hooper NM, Henderson Z, Vaughan PF, Peers C, Cowburn RF, Pearson HA. (2002) Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y. Neuroreport, 13 (12): 1553-6. [PMID:12218704]
29. Sacco T, De Luca A, Tempia F. (2006) Properties and expression of Kv3 channels in cerebellar Purkinje cells. Mol Cell Neurosci, 33 (2): 170-9. [PMID:16949837]
30. Shapiro MS, DeCoursey TE. (1991) Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes. J Gen Physiol, 97 (6): 1251-78. [PMID:1875189]
31. Shapiro MS, DeCoursey TE. (1991) Selectivity and gating of the type L potassium channel in mouse lymphocytes. J Gen Physiol, 97 (6): 1227-50. [PMID:1875188]
32. Shumilina E, Lampert A, Lupescu A, Myssina S, Strutz-Seebohm N, Henke G, Grahammer F, Wulff P, Kuhl D, Lang F. (2005) Deranged Kv channel regulation in fibroblasts from mice lacking the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol, 204 (1): 87-98. [PMID:15605386]
33. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA. (2005) Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol, 288 (6): L1049-58. [PMID:15665041]
34. Wang LY, Gan L, Forsythe ID, Kaczmarek LK. (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol (Lond.), 509 ( Pt 1): 183-94. [PMID:9547392]
35. Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, Chen S, Thornhill W, Ellisman M, Rudy B. (1995) The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci, 15 (6): 4298-314. [PMID:7790912]
36. Weiser M, Vega-Saenz de Miera E, Kentros C, Moreno H, Franzen L, Hillman D, Baker H, Rudy B. (1994) Differential expression of Shaw-related K+ channels in the rat central nervous system. J Neurosci, 14 (3 Pt 1): 949-72. [PMID:8120636]
37. Xu M, Cao R, Xiao R, Zhu MX, Gu C. (2007) The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci, 27 (51): 14158-70. [PMID:18094255]
38. Yokoyama S, Imoto K, Kawamura T, Higashida H, Iwabe N, Miyata T, Numa S. (1989) Potassium channels from NG108-15 neuroblastoma-glioma hybrid cells. Primary structure and functional expression from cDNAs. FEBS Lett, 259 (1): 37-42. [PMID:2599109]
K. George Chandy, Stephan Grissmer, George A. Gutman, Michel Lazdunski, David Mckinnon, Jeanne Nerbonne, Luis A. Pardo, Gail A. Robertson, Bernardo Rudy, Michael C. Sanguinetti, Walter Stühmer, Xiaoliang Wang.
Last modified on 15/09/2015.
The citation format for the published version of this page will be: