Top ▲

GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.

CFTR

Click here for help

Not curated in GtoImmuPdb

Target id: 707

Nomenclature: CFTR

Family: CFTR

Annotation status:  image of a red circle Awaiting annotation  » Email us

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 12 1480 7q31.2 CFTR CF transmembrane conductance regulator
Mouse 12 1476 6 8.1 cM Cftr cystic fibrosis transmembrane conductance regulator
Rat 12 1476 4q21 Cftr CF transmembrane conductance regulator
Previous and Unofficial Names Click here for help
ABCC7 | ABC35 | CFTR/MRP | MRP7 | TNR-CFTR | ATP-binding cassette sub-family C member 7 | cAMP-dependent chloride channel | cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
UniProtKB
Wikipedia
Functional Characteristics Click here for help
γ = 6-9 pS; permeability ratio sequence: SCN- > NO3- > Br- > Cl- > I -> formate- > F- ; conductance ratio sequence: Cl- > NO3- > Br- ~ formate- > SCN- > I-. Slight outward rectification, only observed in intact cells, is probably due to cytosolic anions resulting in voltage-dependent channel block [16]. Activated by binding of and phosphorylation by PKA [17]. Opening of the channel gate follows ATP binding at two nucleotide binding domains (NBD1 and NBD2), and formation of an intramolecular NBD1/NBD2 tight dimer [29]; closing is coupled to ATP hydrolysis and dimer dissociation [5]. Positively regulated by PKC [3] and PKGII (in enterocytes) [24,28].

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
felodipine Small molecule or natural product Approved drug Hs Potentiation 8.4 pKi - no 19
pKi 8.4 (Ki 4x10-9 M) [19]
Not voltage dependent
ivacaftor Small molecule or natural product Approved drug Ligand has a PDB structure Hs Potentiation 8.5 – 9.3 pEC50 - no 4,10
pEC50 9.3 (EC50 5x10-10 M) [4]
Not voltage dependent
pEC50 8.5 (EC50 3x10-9 M) [10]
Not voltage dependent
Description: Measuring ligand-induced changes in membrane potential due to CFTR-mediated, forskolin-stimulated chloride efflux
compound 16d [PMID: 36573286] Small molecule or natural product Hs Activation 7.6 pEC50 - no 14
pEC50 7.6 (EC50 2.3x10-8 M) [14]
Not voltage dependent
elexacaftor Small molecule or natural product Approved drug Ligand has a PDB structure Hs - 6.4 – 7.2 pEC50 - no 1,13
pEC50 6.4 – 7.2 (EC50 4.07x10-7 – 7x10-8 M) Correction [1,13]
Not voltage dependent
GLPG2737 Small molecule or natural product Hs - 6.2 – 7.2 pEC50 - no 21
pEC50 7.2 (EC50 7.1x10-8 M) Co-corrector [21]
Not voltage dependent
Description: In the presence of potentiator GLPG1837 and corrector GLPG2222- determined in a Transepithelial Clamp Circuit (TECC) electrophysiological assay
pEC50 6.2 (EC50 6.95x10-7 M) Co-corrector [21]
Not voltage dependent
Description: Determined in a Cell Surface Expression Horseradish Peroxidase (CSE-HRP) assay
GLPG1837 Small molecule or natural product Ligand has a PDB structure Hs Potentiation 6.6 pEC50 - no 31
pEC50 6.6 (EC50 2.29x10-7 M) [31]
Not voltage dependent
deutivacaftor Small molecule or natural product Approved drug Hs Potentiation 6.6 pEC50 - no 11
pEC50 6.6 (EC50 2.57x10-7 M) [11]
Not voltage dependent
tezacaftor Small molecule or natural product Approved drug Ligand has a PDB structure Hs - 6.6 pEC50 - no 22
pEC50 6.6 (EC50 2.72x10-7 M) Correction [22]
Not voltage dependent
Description: Measuring the increase in cAMP/genistein-dependent current amplitude via the ΔF508-CFTR mutant expressed in NIH/3T3 cells by patch-clamp recording, in response to tezacaftor exposure.
felodipine Small molecule or natural product Approved drug Hs Potentiation 5.7 pEC50 - no 19
pEC50 5.7 (EC50 1.995x10-6 M) [19]
Not voltage dependent
capsaicin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Potentiation - - - no

Not voltage dependent
nimodipine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Potentiation - - - no

Not voltage dependent
genistein Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Potentiation - - - no

Not voltage dependent
apigenin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Potentiation - - - no

Not voltage dependent
CBIQ Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
NS004 Small molecule or natural product Click here for species-specific activity table Hs Potentiation - - - no

Not voltage dependent
phenylglycine-01 Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
sulfonamide-01 Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
UCCF-029 Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
UCCF-339 Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
UCCF-853 Small molecule or natural product Hs Potentiation - - - no

Not voltage dependent
ABBV-3221 Small molecule or natural product Hs Potentiation - - - no 15,23
A CFTR corrector compound that increases protein levels at the cell surface. [15,23]
Not voltage dependent
vanzacaftor Small molecule or natural product Approved drug Hs - - - - no 12
Corrector [12]
Not voltage dependent
Activator Comments
UCCF-339, UCCF-029, apigenin and genistein are examples of flavones. UCCF-853 and NS004 are examples of benzimidazolones. CBIQ is an example of a benzoquinoline. felodipine and nimodipine are examples of 1,4-dihydropyridines. Phenylglycine-01 is an example of a phenylglycine. SF-01 is an example of a sulfonamide.
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
(R)-BPO-27 Small molecule or natural product Ligand has a PDB structure Hs Inhibition 8.4 pIC50 - no 26
pIC50 8.4 (IC50 4x10-9 M) [26]
Not voltage dependent
CFTRinh-172 Small molecule or natural product Hs Inhibition 7.1 pIC50 - no 8
pIC50 7.1 (IC50 7.94x10-8 M) [8]
Not voltage dependent
GaTx1 Peptide Hs Inhibition 7.0 pIC50 - no 7
pIC50 7.0 (IC50 1x10-7 M) [7]
Not voltage dependent
crofelemer Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Inhibition 5.2 pIC50 - no 27
pIC50 5.2 (IC50 7x10-6 M) [27]
Not voltage dependent
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
glibenclamide Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Pore blocker 4.7 pKi - yes 25
pKi 4.7 (Ki 2.18x10-5 M) [25]
Voltage dependent
GlyH-101 Small molecule or natural product Hs Pore blocker 5.4 pIC50 - yes 18
pIC50 5.4 (IC50 4.266x10-6 M) [18]
Voltage dependent
Channel Blocker Comments
Malonic acid hydrazide conjugates are also CFTR channel blockers (see Verkman and Galietta, 2009 [30]).
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
bamocaftor Small molecule or natural product Hs Binding 7.5 pEC50 2,6
pEC50 7.5 (EC50 3x10-8 M) [2,6]
icenticaftor Small molecule or natural product Hs Potentiation 7.3 pEC50 9
pEC50 7.3 (EC50 4.7x10-8 M) [9]
Description: Current determined in CHO cells stably expressing the delF508-CFTR channel.
lumacaftor Small molecule or natural product Approved drug Ligand has a PDB structure Hs Binding 5.6 pEC50 20
pEC50 5.6 (EC50 2.6x10-6 M) [20]
Description: EC50 determined by measuring F508del-CFTR (expressed in FRT cells) activity (I influx; wih co-expression of a fluorescent YFP halide sensor) in the presence of increasing doses of test compound.
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Bronchiectasis with or without elevated sweat chloride 1, BESC1
Synonyms: Bronchiectasis [Disease Ontology: DOID:9563]
Idiopathic bronchiectasis [Orphanet: ORPHA60033]
Disease Ontology: DOID:9563
OMIM: 211400
Orphanet: ORPHA60033
Disease:  Congenital bilateral absence of vas deferens
OMIM: 277180
Orphanet: ORPHA48
Disease:  Cystic fibrosis
Disease Ontology: DOID:1485
OMIM: 219700
Orphanet: ORPHA586
Disease:  Hereditary pancreatitis
Synonyms: Hereditary chronic pancreatitis [Orphanet: ORPHA676]
OMIM: 167800
Orphanet: ORPHA676
Disease:  Male infertility with normal virilization due to meiosis defect
Orphanet: ORPHA217034

References

Show »

1. Abela AR, Alcacio T, Anderson C, Angell PT, Baek M, Clemens JJ, Cleveland T, Ferris LA, Grootenhuis PDJ, Gross RS et al.. (2018) Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator. Patent number: WO2018107100A1. Assignee: Vertex Pharmaceuticals. Priority date: 09/12/2016. Publication date: 14/04/2019.

2. Alcacio T, Baek M, Grootenhuis P, Hadida Ruah SS, Hughes RM, Keshavarz-Shokri A, McAuley-Aoki R, McCartney J, Miller MT, Van Goor F et al.. (2018) Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator. Patent number: WO2018064632A1. Assignee: Vertex Pharmaceuticals. Priority date: 30/09/2016. Publication date: 05/04/2018.

3. Chappe V, Hinkson DA, Zhu T, Chang XB, Riordan JR, Hanrahan JW. (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J Physiol, 548 (Pt 1): 39-52. [PMID:12588899]

4. Csanády L, Töröcsik B. (2019) Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. Elife, 8. [PMID:31205003]

5. Csanády L, Vergani P, Gadsby DC. (2010) Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc Natl Acad Sci U S A, 107 (3): 1241-6. [PMID:19966305]

6. Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, McKone EF, Plant BJ, Prais D, Ramsey BW, Taylor-Cousar JL et al.. (2018) VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med, 379 (17): 1599-1611. [PMID:30334693]

7. Fuller MD, Thompson CH, Zhang ZR, Freeman CS, Schay E, Szakács G, Bakos E, Sarkadi B, McMaster D, French RJ et al.. (2007) State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin. J Biol Chem, 282 (52): 37545-55. [PMID:17951250]

8. Gao X, Yeh HI, Yang Z, Fan C, Jiang F, Howard RJ, Lindahl E, Kappes JC, Hwang TC. (2024) Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore. Nat Commun, 15 (1): 6668. [PMID:39107303]

9. Grand DL, Gosling M, Baettig U, Bahra P, Bala K, Brocklehurst C, Budd E, Butler R, Cheung AK, Choudhury H et al.. (2021) Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. J Med Chem, 64 (11): 7241-7260. [PMID:34028270]

10. Hadida S, Van Goor F, Zhou J, Arumugam V, McCartney J, Hazlewood A, Decker C, Negulescu P, Grootenhuis PD. (2014) Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J Med Chem, 57 (23): 9776-95. [PMID:25441013]

11. Harbeson SL, Morgan AJ, Liu JF, Aslanian AM, Nguyen S, Bridson GW, Brummel CL, Wu L, Tung RD, Pilja L et al.. (2017) Altering Metabolic Profiles of Drugs by Precision Deuteration 2: Discovery of a Deuterated Analog of Ivacaftor with Differentiated Pharmacokinetics for Clinical Development. J Pharmacol Exp Ther, 362 (2): 359-367. [PMID:28611092]

12. Keating C, Yonker LM, Vermeulen F, Prais D, Linnemann RW, Trimble A, Kotsimbos T, Mermis J, Braun AT, O'Carroll M et al.. (2025) Vanzacaftor-tezacaftor-deutivacaftor versus elexacaftor-tezacaftor-ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials. Lancet Respir Med, 13 (3): 256-271. [PMID:39756424]

13. Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, Ramsey BW, Rowe SM, Sass LA, Tullis E et al.. (2018) VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med, 379 (17): 1612-1620. [PMID:30334692]

14. Kim BY, Oh C, Jeon D, Jun I, Lee HK, Kim BR, Park J, Seo KY, Kim KA, Lim D et al.. (2023) Synthetic Strategies for Improving Solubility: Optimization of Novel Pyrazolo[1,5-a]pyrimidine CFTR Activator That Ameliorates Dry Eye Disease. J Med Chem, 66 (1): 413-434. [PMID:36573286]

15. Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J. (2023) CFTR function, pathology and pharmacology at single-molecule resolution. Nature, 616 (7957): 606-614. [PMID:36949202]

16. Linsdell P. (2017) Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci, 74 (1): 67-83. [PMID:27699452]

17. Mihályi C, Iordanov I, Szollosi A, Csanády L. (2024) Structural determinants of protein kinase A essential for CFTR channel activation. Proc Natl Acad Sci U S A, 121 (46): e2407728121. [PMID:39495914]

18. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS. (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol, 124 (2): 125-37. [PMID:15277574]

19. Pedemonte N, Boido D, Moran O, Giampieri M, Mazzei M, Ravazzolo R, Galietta LJ. (2007) Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel. Mol Pharmacol, 72 (1): 197-207. [PMID:17452495]

20. Pesci E, Bettinetti L, Fanti P, Galietta LJ, La Rosa S, Magnoni L, Pedemonte N, Sardone GL, Maccari L. (2015) Novel Hits in the Correction of ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3-d]pyrimidines for the Potential Treatment of Cystic Fibrosis. J Med Chem, 58 (24): 9697-711. [PMID:26561003]

21. Pizzonero M, Akkari R, Bock X, Gosmini R, De Lemos E, Duthion B, Newsome G, Mai TT, Roques V, Jary H et al.. (2024) Discovery of GLPG2737, a Potent Type 2 Corrector of CFTR for the Treatment of Cystic Fibrosis in Combination with a Potentiator and a Type 1 Co-corrector. J Med Chem, 67 (7): 5216-5232. [PMID:38527911]

22. Ruah SSH, Grootenhuis PDJ, Van Goor F, Zhou J, Bear B, Miller MT, McCartney J, Numa MMD. (2009) Indole derivatives as CFTR modulators. Patent number: US20090131492A1. Assignee: ertex Pharmaceuticals Inc. Priority date: 07/04/2006. Publication date: 21/05/2009.

23. Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach R, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A et al.. (2019) Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis. ACS Med Chem Lett, 10 (11): 1543-1548. [PMID:31749908]

24. Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M. (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca(2+)-dependent HCO3- secretion. J Physiol, 505 ( Pt 2) (Pt 2): 411-23. [PMID:9423183]

25. Sheppard DN, Welsh MJ. (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol, 100 (4): 573-91. [PMID:1281220]

26. Snyder DS, Tradtrantip L, Battula S, Yao C, Phuan PW, Fettinger JC, Kurth MJ, Verkman AS. (2013) ABSOLUTE CONFIGURATION AND BIOLOGICAL PROPERTIES OF ENANTIOMERS OF CFTR INHIBITOR BPO-27. ACS Med Chem Lett, 4 (5): 456-459. [PMID:23814642]

27. Tradtrantip L, Namkung W, Verkman AS. (2010) Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol, 77 (1): 69-78. [PMID:19808995]

28. Vaandrager AB, Bot AG, De Jonge HR. (1997) Guanosine 3',5'-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology, 112 (2): 437-43. [PMID:9024297]

29. Vergani P, Lockless SW, Nairn AC, Gadsby DC. (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature, 433 (7028): 876-80. [PMID:15729345]

30. Verkman AS, Galietta LJ. (2009) Chloride channels as drug targets. Nat Rev Drug Discov, 8 (2): 153-71. [PMID:19153558]

31. Yeh HI, Sohma Y, Conrath K, Hwang TC. (2017) A common mechanism for CFTR potentiators. J Gen Physiol, 149 (12): 1105-1118. [PMID:29079713]

Contributors

Show »

Citation information

Paola Vergani.

Last modified on 31/07/2025.

The citation format for the published version of this page will be:

Paola Vergani.
CFTR: CFTR. Last modified on 31/07/2025. Accessed on 12/09/2025. IUPHAR/BPS Guide to PHARMACOLOGY, https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=707.