Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Not curated in GtoImmuPdb
Target id: 123
Nomenclature: GPR88
Family: Class A Orphans with only surrogate ligands
Annotation status:
Annotated and reviewed, awaiting update
» Email us
Gene and Protein Information ![]() |
||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 384 | 1p21.2 | GPR88 | G protein-coupled receptor 88 | 9 |
Mouse | 7 | 384 | 3 G1 | Gpr88 | G-protein coupled receptor 88 | 9 |
Rat | 7 | 384 | 2q41 | Gpr88 | G-protein coupled receptor 88 |
Previous and Unofficial Names ![]() |
STRG | striatum-specific G-protein coupled receptor |
Database Links ![]() |
|
Specialist databases | |
GPCRdb | gpr88_human (Hs), gpr88_mouse (Mm), gpr88_rat (Rn) |
Other databases | |
Alphafold | Q9GZN0 (Hs), Q9EPB7 (Mm), Q9ESP4 (Rn) |
ChEMBL Target | CHEMBL3399910 (Hs), CHEMBL3879835 (Mm) |
Ensembl Gene | ENSG00000181656 (Hs), ENSMUSG00000068696 (Mm), ENSRNOG00000026953 (Rn) |
Entrez Gene | 54112 (Hs), 64378 (Mm), 64443 (Rn) |
Human Protein Atlas | ENSG00000181656 (Hs) |
KEGG Gene | hsa:54112 (Hs), mmu:64378 (Mm), rno:64443 (Rn) |
OMIM | 607468 (Hs) |
Pharos | Q9GZN0 (Hs) |
RefSeq Nucleotide | NM_022049 (Hs), NM_022427 (Mm), NM_031696 (Rn) |
RefSeq Protein | NP_071332 (Hs), NP_071872 (Mm), NP_113884 (Rn) |
UniProtKB | Q9GZN0 (Hs), Q9EPB7 (Mm), Q9ESP4 (Rn) |
Wikipedia | GPR88 (Hs) |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Primary Transduction Mechanisms ![]() |
|
Transducer | Effector/Response |
Gi/Go family | |
References: 3,5,11 |
Tissue Distribution ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Tissue Distribution Comments | ||||||||
GPR88 expression is often associated with vesicular glutamate transporter 1- immunoreactive terminals [8]. Strital GPR88 expression is regulated by dopaminergic and glutamatergic afferents [8]. |
Expression Datasets ![]() |
|
|
Physiological Functions ![]() |
||||||||
|
||||||||
Physiological Functions Comments | ||||||||
Increased GPR88 expression was observed in the rat arcuate nucleus and ventromedial nucleus of the hypothalamus during lactation [12]. In addition, GPR88 expression was upregulated in the central extended amygdala after repeated mu receptor stimulation [2]. Since mu-opioid receptors are involved in addictive behaviours, it was speculated that GPR88 might be involved in neural adaptations underlying drug addiction and relapse [2]. GPR88 expression in rat hypothalamus was downregulated by sleep deprivation and electroconvulsive therapy and upregulated by fluoxetine treatment. |
Physiological Consequences of Altering Gene Expression ![]() |
||||||||||
|
Gene Expression and Pathophysiology Comments | |
Gene disruption results in altered striatal signalling [7]. |
Biologically Significant Variants ![]() |
||||||||||||||||
|
1. Becker JA, Befort K, Blad C, Filliol D, Ghate A, Dembele D, Thibault C, Koch M, Muller J, Lardenois A, Poch O, Kieffer BL. (2008) Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience, 156 (4): 950-65. [PMID:18786617]
2. Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JA, Poch O, Kieffer BL. (2008) Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci, 27 (11): 2973-84. [PMID:18588537]
3. Dzierba CD, Bi Y, Dasgupta B, Hartz RA, Ahuja V, Cianchetta G, Kumi G, Dong L, Aleem S, Fink C et al.. (2015) Design, synthesis, and evaluation of phenylglycinols and phenyl amines as agonists of GPR88. Bioorg Med Chem Lett, 25 (7): 1448-52. [PMID:25690789]
4. Ghate A, Befort K, Becker JA, Filliol D, Bole-Feysot C, Demebele D, Jost B, Koch M, Kieffer BL. (2007) Identification of novel striatal genes by expression profiling in adult mouse brain. Neuroscience, 146 (3): 1182-92. [PMID:17395390]
5. Jin C, Decker AM, Huang XP, Gilmour BP, Blough BE, Roth BL, Hu Y, Gill JB, Zhang XP. (2014) Synthesis, pharmacological characterization, and structure-activity relationship studies of small molecular agonists for the orphan GPR88 receptor. ACS Chem Neurosci, 5 (7): 576-87. [PMID:24793972]
6. Jin C, Decker AM, Makhijani VH, Besheer J, Darcq E, Kieffer BL, Maitra R. (2018) Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake. J Med Chem, 61 (15): 6748-6758. [PMID:30011199]
7. Logue SF, Grauer SM, Paulsen J, Graf R, Taylor N, Sung MA, Zhang L, Hughes Z, Pulito VL, Liu F, Rosenzweig-Lipson S, Brandon NJ, Marquis KL, Bates B, Pausch M. (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders?. Mol Cell Neurosci, 42 (4): 438-47. [PMID:19796684]
8. Massart R, Guilloux JP, Mignon V, Sokoloff P, Diaz J. (2009) Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur J Neurosci, 30 (3): 397-414. [PMID:19656174]
9. Mizushima K, Miyamoto Y, Tsukahara F, Hirai M, Sakaki Y, Ito T. (2000) A novel G-protein-coupled receptor gene expressed in striatum. Genomics, 69 (3): 314-21. [PMID:11056049]
10. Rahman MT, Decker AM, Ben Hamida S, Perrey DA, Chaminda Lakmal HH, Maitra R, Darcq E, Kieffer BL, Jin C. (2023) Improvement of the Metabolic Stability of GPR88 Agonist RTI-13951-33: Design, Synthesis, and Biological Evaluation. J Med Chem, 66 (4): 2964-2978. [PMID:36749855]
11. Watkins LR, Orlandi C. (2021) In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. Br J Pharmacol, 178 (15): 2963-2975. [PMID:33784795]
12. Xiao XQ, Grove KL, Lau SY, McWeeney S, Smith MS. (2005) Deoxyribonucleic acid microarray analysis of gene expression pattern in the arcuate nucleus/ventromedial nucleus of hypothalamus during lactation. Endocrinology, 146 (10): 4391-8. [PMID:16002521]