Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide
More detailed introduction
Receptors of the Class Frizzled (FZD, nomenclature as agreed by the NC-IUPHAR subcommittee on the Class Frizzled GPCRs [45]), are GPCRs highly conserved across species and were originally identified in Drosophila [8]. While SMO shows structural resemblance to the 10 FZDs, it is functionally separated as it is involved in Hedgehog signaling [45]. SMO exerts its effects by activating heterotrimeric G proteins or stabilization of GLI by sequestering catalytic PKA subunits [3,23,48]. While SMO itself is bound by sterols and oxysterols [11,28], FZDs are activated by WNTs, which are cysteine-rich lipoglycoproteins with fundamental functions in ontogeny and tissue homeostasis. FZD signaling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator β-catenin (CTNNB1, P35222) or being β-catenin-independent (often referred to as canonical vs. non-canonical WNT/FZD signaling, respectively). Nevertheless, it makes pharmacologically more sense to define downstream signaling by transducer coupling to either DVL or heterotrimeric G proteins [46]. WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors LRP5 (O75197) and LRP6 (O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of β-catenin and subsequently its translocation to the nucleus. β-catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. WNT/β-catenin-dependent signalling can also be activated by FZD subtype-specific WNT surrogates [36]. β-catenin-independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of heterotrimeric G proteins [14,38,47], the elevation of intracellular calcium [50], activation of cGMP-specific PDE6 [1] and elevation of cAMP as well as RAC-1, JNK, Rho and Rho kinase signalling [22]. Novel resonance energy transfer-based tools have allowed the study of the GPCR-like nature of FZDs in greater detail. Upon ligand stimulation, FZDs undergo conformational changes and signal via heterotrimeric G proteins [4,20,31,33,44,61-62]. Furthermore, the phosphoprotein Dishevelled constitutes a key transducer in WNT/FZD signaling towards planar-cell-polarity-like pathways. Importantly, FZDs adopt distinct conformational landscapes that regulate pathway selection [18,62]. As with other GPCRs, members of the Frizzled family are functionally dependent on the arrestin scaffolding protein for internalization [10], as well as for β-catenin-dependent [5] and -independent [6,27] signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled-related proteins (sFRP), Wnt-inhibitory factor (WIF1, Q9Y5W5) (WIF), sclerostin (SOST, Q9BQB4) or Dickkopf (DKK)), as well as modulatory (co)-receptors with Ryk, ROR1, ROR2 and PTK7, which may also function as independent signaling proteins. An important FZD4-selective non-WNT agonist is the norrin (NDP, Q00604) cysteine knot protein, which is a key player in FZD4-mediated vascularization for example in the retina and which is functionally related to familial exudative vitreoretinopathy (FEVR).
FZD1
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD2
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD3
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD4
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD5
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD6
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD7
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD8
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD9
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
FZD10
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||
SMO
C
Show summary »« Hide summary
More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Angers S, Moon RT. (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10 (7): 468-77. [PMID:19536106]
Dijksterhuis JP, Petersen J, Schulte G. (2013) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br J Pharmacol,. [PMID:24032637]
King TD, Suto MJ, Li Y. (2012) The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem, 113 (1): 13-8. [PMID:21898546]
King TD, Zhang W, Suto MJ, Li Y. (2012) Frizzled7 as an emerging target for cancer therapy. Cell Signal, 24 (4): 846-51. [PMID:22182510]
Koval A, Purvanov V, Egger-Adam D, Katanaev VL. (2011) Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol, 82 (10): 1311-9. [PMID:21689640]
* Kozielewicz P, Turku A, Schulte G. (2020) Molecular Pharmacology of Class F Receptor Activation. Mol Pharmacol, 97 (2): 62-71. [PMID:31591260]
Schuijers J, Clevers H. (2012) Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J, 31 (12): 2685-96. [PMID:22617424]
Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev, 62 (4): 632-67. [PMID:21079039]
Schulte G. (2015) Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur J Pharmacol, 763 (Pt B): 191-5. [PMID:26003275]
* Schulte G. (2024) International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev, 76 (6): 1009-1037. [PMID:38955509]
* Schulte G, Kozielewicz P. (2021) Pharmacology of the WNT Signaling System. In Pharmacology of the WNT Signaling System Edited by Schulte G, Kozielewicz P (Springer Cham) 422. DOI: 10.1007/978-3-030-85499-7 [ISBN:9783030854980]
Schulte G, Schambony A, Bryja V. (2010) beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways?. Br J Pharmacol, 159 (5): 1051-8. [PMID:19888962]
* Schulte G, Scharf MM, Bous J, Voss JH, Grätz L, Kozielewicz P. (2024) Frizzleds act as dynamic pharmacological entities. Trends Pharmacol Sci, 45 (5): 419-429. [PMID:38594145]
* Schulte G, Wright SC. (2018) Frizzleds as GPCRs - More Conventional Than We Thought!. Trends Pharmacol Sci, 39 (9): 828-842. [PMID:30049420]
* van Amerongen R. (2012) Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol, 4 (10). [PMID:22935904]
* Wang Y, Chang H, Rattner A, Nathans J. (2016) Frizzled Receptors in Development and Disease. Curr Top Dev Biol, 117: 113-39. [PMID:26969975]
1. Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY. (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science, 298 (5600): 2006-10. [PMID:12471263]
2. Arthofer E, Hot B, Petersen J, Strakova K, Jäger S, Grundmann M, Kostenis E, Gutkind JS, Schulte G. (2016) WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13. Mol Pharmacol, 90 (4): 447-59. [PMID:27458145]
3. Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL et al.. (2021) Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol, 19 (4): e3001191. [PMID:33886552]
4. Bowin CF, Kozielewicz P, Grätz L, Kowalski-Jahn M, Schihada H, Schulte G. (2023) WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction. Sci Signal, 16 (779): eabo4974. [PMID:37014927]
5. Bryja V, Gradl D, Schambony A, Arenas E, Schulte G. (2007) Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo. Proc Natl Acad Sci USA, 104 (16): 6690-5. [PMID:17426148]
6. Bryja V, Schambony A, Cajánek L, Dominguez I, Arenas E, Schulte G. (2008) Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep, 9 (12): 1244-50. [PMID:18953287]
7. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP et al.. (2016) Structural basis of Smoothened regulation by its extracellular domains. Nature, 535 (7613): 517-522. [PMID:27437577]
8. Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ et al.. (1992) Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. J Biol Chem, 267 (35): 25202-7. [PMID:1334084]
9. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. (2002) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA, 99 (22): 14071-6. [PMID:12391318]
10. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC. (2003) Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science, 301 (5638): 1394-7. [PMID:12958365]
11. Corcoran RB, Scott MP. (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA, 103 (22): 8408-13. [PMID:16707575]
12. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B. (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res, 67 (11): 5371-9. [PMID:17545618]
13. Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, Latorraca NR, Faust B, Dror RO, Beachy PA et al.. (2019) Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature, 571 (7764): 284-288. [PMID:31263273]
14. Dijksterhuis JP, Petersen J, Schulte G. (2013) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br J Pharmacol,. [PMID:24032637]
15. Fukukawa C, Hanaoka H, Nagayama S, Tsunoda T, Toguchida J, Endo K, Nakamura Y, Katagiri T. (2008) Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci, 99 (2): 432-40. [PMID:18271942]
16. Generoso SF, Giustiniano M, La Regina G, Bottone S, Passacantilli S, Di Maro S, Cassese H, Bruno A, Mallardo M, Dentice M et al.. (2015) Pharmacological folding chaperones act as allosteric ligands of Frizzled4. Nat Chem Biol, 11 (4): 280-6. [PMID:25751279]
17. Gorojankina T, Hoch L, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Girard N, Mann A, Manetti F, Solinas A et al.. (2013) Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of Smoothened. Mol Pharmacol, 83 (5): 1020-9. [PMID:23448715]
18. Grätz L, Kowalski-Jahn M, Scharf MM, Kozielewicz P, Jahn M, Bous J, Lambert NA, Gloriam DE, Schulte G. (2023) Pathway selectivity in Frizzleds is achieved by conserved micro-switches defining pathway-determining, active conformations. Nat Commun, 14 (1): 4573. [PMID:37516754]
19. Grätz L, Sajkowska-Kozielewicz JJ, Wesslowski J, Kinsolving J, Bridge LJ, Petzold K, Davidson G, Schulte G, Kozielewicz P. (2024) NanoBiT- and NanoBiT/BRET-based assays allow the analysis of binding kinetics of Wnt-3a to endogenous Frizzled 7 in a colorectal cancer model. Br J Pharmacol, 181 (20): 3819-3835. [PMID:37055379]
20. Grätz L, Voss JH, Schulte G. (2024) Class-Wide Analysis of Frizzled-Dishevelled Interactions Using BRET Biosensors Reveals Functional Differences among Receptor Paralogs. ACS Sens, 9 (9): 4626-4636. [PMID:39213612]
21. Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM et al.. (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109 (29): 11717-22. [PMID:22753465]
22. Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, Greengard P, Andersson T. (2009) Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem, 284 (40): 27533-43. [PMID:19651774]
23. Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, Zhang J, Hedeen DS, Zhu JF, Capener JL et al.. (2022) A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol, 29 (10): 990-999. [PMID:36202993]
24. Hoch L, Faure H, Roudaut H, Schoenfelder A, Mann A, Girard N, Bihannic L, Ayrault O, Petricci E, Taddei M et al.. (2015) MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J, 29 (5): 1817-29. [PMID:25636740]
25. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A. (2018) Structural Basis of Smoothened Activation in Hedgehog Signaling. Cell, 174 (2): 312-324.e16. [PMID:29804838]
26. Kilander MB, Dahlström J, Schulte G. (2014) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity. Cell Signal, 26 (9): 1943-9. [PMID:24873871]
27. Kim GH, Han JK. (2007) Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J, 26 (10): 2513-26. [PMID:17476309]
28. Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S, Luchetti G, Sircar R, Nachtergaele S, Mydock-McGrane L, Krishnan K et al.. (2022) Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. Sci Adv, 8 (22): eabm5563. [PMID:35658032]
29. Kinsolving J, Bous J, Kozielewicz P, Košenina S, Shekhani R, Grätz L, Masuyer G, Wang Y, Stenmark P, Dong M et al.. (2024) Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD7. Cell Rep, 43 (2): 113727. [PMID:38308843]
30. Kinsolving J, Grätz L, Voss JH, Löw B, Shorter E, Jude B, Lanner JT, Löber S, Gmeiner P, Schulte G. (2024) A Putative Frizzled 7-Targeting Compound Acts as a Firefly Luciferase Inhibitor. J Med Chem, 67 (24): 22332-22341. [PMID:39670643]
31. Kowalski-Jahn M, Schihada H, Turku A, Huber T, Sakmar TP, Schulte G. (2021) Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. Sci Adv, 7 (46): eabj7917. [PMID:34757789]
32. Kozielewicz P, Bowin CF, Turku A, Schulte G. (2020) A NanoBRET-Based Binding Assay for Smoothened Allows Real-time Analysis of Ligand Binding and Distinction of Two Binding Sites for BODIPY-cyclopamine. Mol Pharmacol, 97 (1): 23-34. [PMID:31707356]
33. Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Cañizal MCA, Ono Y, Inoue A, Hoffmann C, Schulte G. (2020) Structural insight into small molecule action on Frizzleds. Nat Commun, 11 (1): 414. [PMID:31964872]
34. Larasati Y, Boudou C, Koval A, Katanaev VL. (2022) Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD7 in cancer. Drug Discov Today, 27 (3): 777-792. [PMID:34915171]
35. Manning DR, Shen F, Riobo NA. (2015) Evaluating the Activity of Smoothened Toward G Proteins Using [³⁵S]Guanosine 5'-(3-O-thio)triphosphate ([³⁵S]GTPγS). Methods Mol Biol, 1322: 35-44. [PMID:26179037]
36. Miao Y, Ha A, de Lau W, Yuki K, Santos AJM, You C, Geurts MH, Puschhof J, Pleguezuelos-Manzano C, Peng WC et al.. (2020) Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy In Vivo. Cell Stem Cell, 27 (5): 840-851.e6. [PMID:32818433]
37. Nile AH, de Sousa E Melo F, Mukund S, Piskol R, Hansen S, Zhou L, Zhang Y, Fu Y, Gogol EB, Kömüves LG et al.. (2018) A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol, 14 (6): 582-590. [PMID:29632413]
38. Petersen J, Wright SC, Rodríguez D, Matricon P, Lahav N, Vromen A, Friedler A, Strömqvist J, Wennmalm S, Carlsson J et al.. (2017) Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat Commun, 8 (1): 226. [PMID:28790300]
39. Qi X, Friedberg L, De Bose-Boyd R, Long T, Li X. (2020) Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat Chem Biol, 16 (12): 1368-1375. [PMID:32929279]
40. Qi X, Liu H, Thompson B, McDonald J, Zhang C, Li X. (2019) Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature, 571 (7764): 279-283. [PMID:31168089]
41. Qian Y, Ma Z, Xu Z, Duan Y, Xiong Y, Xia R, Zhu X, Zhang Z, Tian X, Yin H et al.. (2024) Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation. Nat Commun, 15 (1): 7644. [PMID:39223191]
42. Riccio G, Bottone S, La Regina G, Badolati N, Passacantilli S, Rossi GB, Accardo A, Dentice M, Silvestri R, Novellino E et al.. (2018) A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry, 57 (5): 839-851. [PMID:29293331]
43. Riobo NA, Saucy B, Dilizio C, Manning DR. (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA, 103 (33): 12607-12. [PMID:16885213]
44. Schihada H, Kowalski-Jahn M, Turku A, Schulte G. (2021) Deconvolution of WNT-induced Frizzled conformational dynamics with fluorescent biosensors. Biosens Bioelectron, 177: 112948. [PMID:33486136]
45. Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev, 62 (4): 632-67. [PMID:21079039]
46. Schulte G. (2024) International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev, 76 (6): 1009-1037. [PMID:38955509]
47. Schulte G, Wright SC. (2018) Frizzleds as GPCRs - More Conventional Than We Thought!. Trends Pharmacol Sci, 39 (9): 828-842. [PMID:30049420]
48. Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR. (2013) Smoothened is a fully competent activator of the heterotrimeric G protein G(i). Mol Pharmacol, 83 (3): 691-7. [PMID:23292797]
49. Sinha S, Chen JK. (2006) Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol, 2 (1): 29-30. [PMID:16408088]
50. Slusarski DC, Corces VG, Moon RT. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390 (6658): 410-3. [PMID:9389482]
51. Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R et al.. (2017) Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med, 23 (1): 60-68. [PMID:27869803]
52. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA. (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 406 (6799): 1005-9. [PMID:10984056]
53. Thomsen HK, Jacobsen M, Gerstoft J, Malchow-Møller A. (1985) The histomorphology of Kaposi sarcoma in three homosexual men. Acta Pathol Microbiol Immunol Scand A, 93 (1): 17-23. [PMID:3969828]
54. Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C et al.. (2020) Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife, 9. DOI: 10.7554/eLife.58464 [PMID:32762848]
55. Turner MW, Cruz R, Mattos J, Baughman N, Elwell J, Fothergill J, Nielsen A, Brookhouse J, Bartlett A, Malek P et al.. (2016) Cyclopamine bioactivity by extraction method from Veratrum californicum. Bioorg Med Chem, 24 (16): 3752-7. [PMID:27338657]
56. von Maltzahn J, Bentzinger CF, Rudnicki MA. (2012) Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol, 14 (2): 186-91. [PMID:22179044]
57. Voss JH, Koszegi Z, Yan Y, Shorter E, Grätz L, Lanner JT, Calebiro D, Schulte G. (2025) WNT-induced association of Frizzled and LRP6 is not sufficient for the initiation of WNT/β-catenin signaling. Nat Commun, 16 (1): 4848. [PMID:40413190]
58. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V et al.. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun, 5: 4355. [PMID:25008467]
59. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC. (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497 (7449): 338-43. [PMID:23636324]
60. Wang J, Mook Jr RA, Lu J, Gooden DM, Ribeiro A, Guo A, Barak LS, Lyerly HK, Chen W. (2012) Identification of a novel Smoothened antagonist that potently suppresses Hedgehog signaling. Bioorg Med Chem, 20 (22): 6751-7. [PMID:23063522]
61. Wright SC, Cañizal MCA, Benkel T, Simon K, Le Gouill C, Matricon P, Namkung Y, Lukasheva V, König GM, Laporte SA et al.. (2018) FZD5 is a Gαq-coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Sci Signal, 11 (559). [PMID:30514810]
62. Wright SC, Kozielewicz P, Kowalski-Jahn M, Petersen J, Bowin CF, Slodkowicz G, Marti-Solano M, Rodríguez D, Hot B, Okashah N et al.. (2019) A conserved molecular switch in Class F receptors regulates receptor activation and pathway selection. Nat Commun, 10 (1): 667. [PMID:30737406]
63. Xu L, Chen B, Schihada H, Wright SC, Turku A, Wu Y, Han GW, Kowalski-Jahn M, Kozielewicz P, Bowin CF et al.. (2021) Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrimeric Gs. Cell Res, 31 (12): 1311-1314. [PMID:34239071]
64. Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA et al.. (2018) Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature, 560 (7720): 666-670. [PMID:30135577]
65. Zhang K, Wu H, Hoppe N, Manglik A, Cheng Y. (2022) Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat Commun, 13 (1): 4366. [PMID:35902590]
66. Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K et al.. (2017) Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun, 8: 15383. [PMID:28513578]
67. Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, Xu F. (2024) A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov, 10 (1): 3. [PMID:38182578]
Subcommittee members:
Gunnar Schulte (Chairperson)
Paweł Kozielewicz |
Other contributors:
Elisa Arthofer
Jacomijn Dijksterhuis
Lukas Grätz
Belma Hot
Julia Kinsolving
Matthias Lauth
Julian Petersen
Katerina Strakova
Jana Valnohova
Shane Wright |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
There is limited knowledge about WNT/FZD specificity and which molecular entities determine the signalling outcome of a specific WNT/FZD pair. Recent insights into protein dynamics, activation mechanisms, conserved microswitches, and co-receptor involvement of FZDs have advanced our understanding in being able to target this enigmatic class of receptors as drug targets [4,18,20,29,57]. Findings with recent reported small molecules were not reproducible, including FzM1.8 and carbamazepine, highlighting the limitations in the assays available [30,53]. Understanding of FZD and SMO coupling to heterotrimeric G proteins is incomplete, but progress has been made [2,13-14,26,35,39-40,43,48,56,61]. Development of pharmacological tools [32] for SMO has been faciliated by successful determination of several SMO structures [7,13,25,32,39-40,58-59,65-66]. The increase in FZD structures including FZD1,3,6,7 in apo and active states and a recent FZD4 complex with DEP have provided insights into FZD transmembrane organization and intracellular transducer coupling [29,41,54,63-64,67]. FZD7 has emerged as a particularly interesting WNT receptor by primarily modulating carcinogenesis, metastasis, and chemoresistance [34]. Recent pharmacological and structural studies highlight FZD7 in the context of intenstinal cancer and its interaction with the virulence factor, TcdB [19,29].