Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide
More detailed introduction
The human formylpeptide receptor subfamily of GPCRs (FPR: nomenclature described in [48,70] [1, 2]) comprises three members (FPR1, FPR2, and FPR3). Two of these, FPR1 and FPR2, recognize peptides bearing N-terminal formyl-Met from invading bacteria [29] or mitochondria. These peptides function as danger signals in innate immunity. FPR1 and FPR2 are promiscuous and also recognize several non-formylated peptides, proteins, lipids and small molecules [29,48,70] of which some are able to initiate signals (balanced or biased) that mediate pro-inflammatory and/or inflammation resolving effects [37,46]. In contrast, FPR3 remains less well-characterized in part due to the absence of selective ligands which has significantly impeded progress in its functional characterization [9,50].
FPR1
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||
FPR2
C
Show summary »« Hide summary
More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||
FPR3
C
Show summary »« Hide summary
More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. (2016) Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol, 114: 22-39. [PMID:27131862]
* Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. (2015) The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation. Am J Pathol, 185 (5): 1172-1184. [PMID:25791526]
Gavins FN. (2010) Are formyl peptide receptors novel targets for therapeutic intervention in ischaemia-reperfusion injury?. Trends Pharmacol Sci, 31 (6): 266-76. [PMID:20483490]
* Krepel SA, Wang JM. (2019) Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors. Int J Mol Sci, 20 (14). [PMID:31336833]
Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB. (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA, 106 (24): 9842-7. [PMID:19497865]
* Mun B, Obi P, Szlenk CT, Natesan S. (2024) Structural basis for the access and binding of resolvin D1 (RvD1) to formyl peptide receptor 2 (FPR2/ALX), a class A GPCR. bioRxiv,. [PMID:39386527]
* Nunes VS, Abrahão Jr O, Rogério AP, Serhan CN. (2023) ALX/FPR2 Activation by Stereoisomers of D1 Resolvins Elucidating with Molecular Dynamics Simulation. J Phys Chem B, 127 (29): 6479-6486. [PMID:37428488]
* Nunes VS, Serhan CN, Abrahão Jr O, Rogério AP. (2025) ALX/FPR2 Receptor Activation by Inflammatory (fMLFII) and Pro-resolving (LXA4 and RvD3) Agonists. ACS Phys Chem Au, 5 (4): 367-374. [PMID:40727226]
* Perretti M, Godson C. (2020) Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br J Pharmacol, 177 (20): 4595-4600. [PMID:32954491]
* Yazid S, Norling LV, Flower RJ. (2012) Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat, 98 (3-4): 94-100. [PMID:22123264]
* Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev, 61 (2): 119-61. [PMID:19498085]
1. Asahina Y, Wurtz NR, Arakawa K, Carson N, Fujii K, Fukuchi K, Garcia R, Hsu MY, Ishiyama J, Ito B et al.. (2020) Discovery of BMS-986235/LAR-1219: A Potent Formyl Peptide Receptor 2 (FPR2) Selective Agonist for the Prevention of Heart Failure. J Med Chem, 63 (17): 9003-9019. [PMID:32407089]
2. Bae YS, Lee HY, Jo EJ, Kim JI, Kang HK, Ye RD, Kwak JY, Ryu SH. (2004) Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol, 173 (1): 607-14. [PMID:15210823]
3. Cilibrizzi A, Quinn MT, Kirpotina LN, Schepetkin IA, Holderness J, Ye RD, Rabiet MJ, Biancalani C, Cesari N, Graziano A et al.. (2009) 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones: a novel class of small-molecule agonists for formyl peptide receptors. J Med Chem, 52 (16): 5044-57. [PMID:19639995]
4. Clish CB, O'Brien JA, Gronert K, Stahl GL, Petasis NA, Serhan CN. (1999) Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc Natl Acad Sci USA, 96 (14): 8247-52. [PMID:10393980]
5. Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, Clark AJ, Flower RJ, Perretti M. (2013) Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci USA, 110 (45): 18232-7. [PMID:24108355]
6. Dahlgren C, Forsman H. (2025) What is the potential of formyl peptide receptor 1 (FPR1) as a therapeutic target in human disease?. Expert Opin Ther Targets, 29 (7): 409-413. [PMID:40437796]
7. De Yang, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 192 (7): 1069-74. [PMID:11015447]
8. Deng X, Ueda H, Su SB, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM. (1999) A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood, 94 (4): 1165-73. [PMID:10438703]
9. Devosse T, Dutoit R, Migeotte I, De Nadai P, Imbault V, Communi D, Salmon I, Parmentier M. (2011) Processing of HEBP1 by cathepsin D gives rise to F2L, the agonist of formyl peptide receptor 3. J Immunol, 187 (3): 1475-85. [PMID:21709160]
10. Fiore S, Maddox JF, Perez HD, Serhan CN. (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med, 180 (1): 253-60. [PMID:8006586]
11. Fiore S, Ryeom SW, Weller PF, Serhan CN. (1992) Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J Biol Chem, 267 (23): 16168-76. [PMID:1322894]
12. Fiore S, Serhan CN. (1995) Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction. Biochemistry, 34 (51): 16678-86. [PMID:8527441]
13. Forsman H, Andréasson E, Karlsson J, Boulay F, Rabiet MJ, Dahlgren C. (2012) Structural characterization and inhibitory profile of formyl peptide receptor 2 selective peptides descending from a PIP2-binding domain of gelsolin. J Immunol, 189 (2): 629-37. [PMID:22706076]
14. Francavilla F, Vitone D, Schepetkin IA, Kirpotina LN, Carrieri A, Brunetti L, Ghafir El Idrissi I, Perrone MG, Frydrych JK, Trojan E et al.. (2025) Design, Synthesis, and Biological Evaluation of Novel Heteroaryl, Squaramide, and Indolcarboxamide Derivatives as Formyl Peptide Receptor 2 Agonists to Target Neuroinflammation. ACS Chem Neurosci, 16 (17): 3292-3311. [PMID:40847912]
15. Freer RJ, Day AR, Muthukumaraswamy N, Pinon D, Wu A, Showell HJ, Becker EL. (1982) Formyl peptide chemoattractants: a model of the receptor on rabbit neutrophils. Biochemistry, 21 (2): 257-63. [PMID:6280748]
16. Freer RJ, Day AR, Radding JA, Schiffmann E, Aswanikumar S, Showell HJ, Becker EL. (1980) Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry, 19 (11): 2404-10. [PMID:7387981]
17. Gabl M, Sundqvist M, Holdfeldt A, Lind S, Mårtensson J, Christenson K, Marutani T, Dahlgren C, Mukai H, Forsman H. (2018) Mitocryptides from Human Mitochondrial DNA-Encoded Proteins Activate Neutrophil Formyl Peptide Receptors: Receptor Preference and Signaling Properties. J Immunol, 200 (9): 3269-3282. [PMID:29602776]
18. García RA, Lupisella JA, Ito BR, Hsu MY, Fernando G, Carson NL, Allocco JJ, Ryan CS, Zhang R, Wang Z et al.. (2021) Selective FPR2 Agonism Promotes a Proresolution Macrophage Phenotype and Improves Cardiac Structure-Function Post Myocardial Infarction. JACC Basic Transl Sci, 6 (8): 676-689. [PMID:34466754]
19. Gavins FN, Yona S, Kamal AM, Flower RJ, Perretti M. (2003) Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood, 101 (10): 4140-7. [PMID:12560218]
20. Ge Y, Guan H, Li T, Wang J, Ying L, Guo S, Lu J, Ye RD, Wu G. (2025) Discovery of Yersinia LcrV as a novel biased agonist of formyl peptide receptor 1 to bi-directionally modulate intracellular kinases in triple-negative breast cancer. Acta Pharm Sin B, 15 (7): 3646-3662. [PMID:40698130]
21. Ge Y, Zhang S, Wang J, Xia F, Wan JB, Lu J, Ye RD. (2020) Dual modulation of formyl peptide receptor 2 by aspirin-triggered lipoxin contributes to its anti-inflammatory activity. FASEB J, 34 (5): 6920-6933. [PMID:32239559]
22. Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN. (2001) Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am J Pathol, 158 (1): 3-9. [PMID:11141472]
23. Guilford WJ, Bauman JG, Skuballa W, Bauer S, Wei GP, Davey D, Schaefer C, Mallari C, Terkelsen J, Tseng JL et al.. (2004) Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J Med Chem, 47 (8): 2157-65. [PMID:15056011]
24. Hayhoe RP, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M. (2006) Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood, 107 (5): 2123-30. [PMID:16278303]
25. He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, Ye RD. (2013) Functional characterization of three mouse formyl peptide receptors. Mol Pharmacol, 83 (2): 389-98. [PMID:23160941]
26. He HQ, Ye RD. (2017) The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules, 22 (3). [PMID:28335409]
27. Kim D, Seok OH, Ju S, Kim SY, Kim JM, Lee C, Hwang CS. (2023) Detection of Nα-terminally formylated native proteins by a pan-N-formyl methionine-specific antibody. J Biol Chem, 299 (5): 104652. [PMID:36990220]
28. Koo C, Lefkowitz RJ, Snyderman R. (1982) The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem Biophys Res Commun, 106: 442-449. [PMID:6285921]
29. Krepel SA, Wang JM. (2019) Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors. Int J Mol Sci, 20 (14). [PMID:31336833]
30. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN. (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA, 107 (4): 1660-5. [PMID:20080636]
31. Le Y, Gong W, Li B, Dunlop NM, Shen W, Su SB, Ye RD, Wang JM. (1999) Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol, 163 (12): 6777-84. [PMID:10586077]
32. Li Z, Li Y, Han J, Zhu Z, Li M, Liu Q, Wang Y, Shi FD. (2021) Formyl peptide receptor 1 signaling potentiates inflammatory brain injury. Sci Transl Med, 13 (605). [PMID:34349037]
33. Liao Q, Ye RD. (2022) Structural and conformational studies of biased agonism through formyl peptide receptors. Am J Physiol Cell Physiol, 322 (5): C939-C947. [PMID:35385323]
34. Lin H, Ma C, Cai K, Guo L, Wang X, Lv L, Zhang C, Lin J, Zhang D, Ye C et al.. (2025) Metabolic signaling of ceramides through the FPR2 receptor inhibits adipocyte thermogenesis. Science, 388 (6746): eado4188. [PMID:40080544]
35. Lind S, Sundqvist M, Holmdahl R, Dahlgren C, Forsman H, Olofsson P. (2019) Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949. Biochem Pharmacol, 166: 163-173. [PMID:31085160]
36. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem, 272 (11): 6972-8. [PMID:9054386]
37. Metzemaekers M, Gouwy M, Proost P. (2020) Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol, 17 (5): 433-450. [PMID:32238918]
38. Migeotte I, Riboldi E, Franssen JD, Grégoire F, Loison C, Wittamer V, Detheux M, Robberecht P, Costagliola S, Vassart G et al.. (2005) Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med, 201 (1): 83-93. [PMID:15623572]
39. Morley AD, King S, Roberts B, Lever S, Teobald B, Fisher A, Cook T, Parker B, Wenlock M, Phillips C et al.. (2012) Lead optimisation of pyrazoles as novel FPR1 antagonists. Bioorg Med Chem Lett, 22 (1): 532-6. [PMID:22094028]
40. Nanamori M, Cheng X, Mei J, Sang H, Xuan Y, Zhou C, Wang MW, Ye RD. (2004) A novel nonpeptide ligand for formyl peptide receptor-like 1. Mol Pharmacol, 66 (5): 1213-22. [PMID:15308762]
41. Nunes VS, Serhan CN, Abrahão Jr O, Rogério AP. (2025) ALX/FPR2 Receptor Activation by Inflammatory (fMLFII) and Pro-resolving (LXA4 and RvD3) Agonists. ACS Phys Chem Au, 5 (4): 367-374. [PMID:40727226]
42. Osei-Owusu P, Charlton TM, Kim HK, Missiakas D, Schneewind O. (2019) FPR1 is the plague receptor on host immune cells. Nature, 574 (7776): 57-62. [PMID:31534221]
43. Peng C, Vecchio EA, Nguyen ATN, De Seram M, Tang R, Keov P, Woodman OL, Chen YC, Baell J, May LT et al.. (2024) Biased receptor signalling and intracellular trafficking profiles of structurally distinct formylpeptide receptor 2 agonists. Br J Pharmacol, 181 (22): 4677-4692. [PMID:39154373]
44. Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN. (2002) Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med, 8 (11): 1296-302. [PMID:12368905]
45. Perretti M, Flower RJ. (1995) Anti-inflammatory lipocortin-derived peptides. Agents Actions Suppl, 46: 131-8. [PMID:7610983]
46. Perretti M, Godson C. (2020) Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br J Pharmacol, 177 (20): 4595-4600. [PMID:32954491]
47. Qin CX, May LT, Li R, Cao N, Rosli S, Deo M, Alexander AE, Horlock D, Bourke JE, Yang YH et al.. (2017) Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun, 8: 14232. [PMID:28169296]
48. Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. (2022) Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol, 179 (19): 4617-4639. [PMID:35797341]
49. Rabiet MJ, Huet E, Boulay F. (2005) Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol, 35 (8): 2486-95. [PMID:16025565]
50. Rabiet MJ, Macari L, Dahlgren C, Boulay F. (2011) N-formyl peptide receptor 3 (FPR3) departs from the homologous FPR2/ALX receptor with regard to the major processes governing chemoattractant receptor regulation, expression at the cell surface, and phosphorylation. J Biol Chem, 286 (30): 26718-31. [PMID:21543323]
51. Rautenberg M, Joo HS, Otto M, Peschel A. (2011) Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J, 25 (4): 1254-63. [PMID:21183593]
52. Schebb NH, Kühn H, Kahnt AS, Rund KM, O'Donnell VB, Flamand N, Peters-Golden M, Jakobsson PJ, Weylandt KH, Rohwer N et al.. (2022) Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators-What is the Evidence so far?. Front Pharmacol, 13: 838782. [PMID:35308198]
53. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Cheng N, Ye RD, Quinn MT. (2014) Antagonism of human formyl peptide receptor 1 (FPR1) by chromones and related isoflavones. Biochem Pharmacol, 92 (4): 627-41. [PMID:25450672]
54. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Quinn MT. (2007) High-throughput screening for small-molecule activators of neutrophils: identification of novel N-formyl peptide receptor agonists. Mol Pharmacol, 71 (4): 1061-74. [PMID:17229869]
55. Showell HJ, Freer RJ, Zigmond SH, Schiffmann E, Aswanikumar S, Corcoran B, Becker EL. (1976) The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med, 143 (5): 1154-69. [PMID:1262785]
56. Sogawa Y, Ohyama T, Maeda H, Hirahara K. (2011) Formyl peptide receptor 1 and 2 dual agonist inhibits human neutrophil chemotaxis by the induction of chemoattractant receptor cross-desensitization. J Pharmacol Sci, 115 (1): 63-8. [PMID:21173551]
57. Stalder AK, Lott D, Strasser DS, Cruz HG, Krause A, Groenen PM, Dingemanse J. (2017) Biomarker-guided clinical development of the first-in-class anti-inflammatory FPR2/ALX agonist ACT-389949. Br J Clin Pharmacol, 83 (3): 476-486. [PMID:27730665]
58. Stenfeldt AL, Karlsson J, Wennerås C, Bylund J, Fu H, Dahlgren C. (2007) Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation, 30 (6): 224-9. [PMID:17687636]
59. Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM. (1999) A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med, 189 (2): 395-402. [PMID:9892621]
60. Sundqvist M, Christenson K, Björnsdottir H, Osla V, Karlsson A, Dahlgren C, Speert DP, Fasth A, Brown KL, Bylund J. (2017) Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes. Front Immunol, 8: 1828. [PMID:29375548]
61. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med, 185 (9): 1693-704. [PMID:9151906]
62. Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM. (2001) Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem, 276 (26): 23645-52. [PMID:11316806]
63. Walther A, Riehemann K, Gerke V. (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell, 5 (5): 831-40. [PMID:10882119]
64. Wang J, Miao Z, Gao Y, Xie Z, Liu M, Zou W. (2025) Formyl peptide receptor 2: a potential therapeutic target for inflammation-related diseases. Pharmacol Rep, 77 (3): 593-609. [PMID:40102363]
65. Wang J, Ye RD. (2022) Agonist concentration-dependent changes in FPR1 conformation lead to biased signaling for selective activation of phagocyte functions. Proc Natl Acad Sci U S A, 119 (31): e2201249119. [PMID:35878025]
66. Weiß E, Kretschmer D. (2018) Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol, 39 (10): 815-829. [PMID:30195466]
67. Wenzel-Seifert K, Seifert R. (1993) Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol, 150 (10): 4591-9. [PMID:8387097]
68. Winther M, Holdfeldt A, Sundqvist M, Rajabkhani Z, Gabl M, Bylund J, Dahlgren C, Forsman H. (2017) Formyl peptide derived lipopeptides disclose differences between the receptors in mouse and men and call the pepducin concept in question. PLoS One, 12 (9): e0185132. [PMID:28934373]
69. Yan P, Nanamori M, Sun M, Zhou C, Cheng N, Li N, Zheng W, Xiao L, Xie X, Ye RD et al.. (2006) The immunosuppressant cyclosporin A antagonizes human formyl peptide receptor through inhibition of cognate ligand binding. J Immunol, 177 (10): 7050-8. [PMID:17082621]
70. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev, 61 (2): 119-61. [PMID:19498085]
71. Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. (2024) The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem, 265: 115989. [PMID:38199163]
72. Zhou C, Zhang S, Nanamori M, Zhang Y, Liu Q, Li N, Sun M, Tian J, Ye PP, Cheng N et al.. (2007) Pharmacological characterization of a novel nonpeptide antagonist for formyl peptide receptor-like 1. Mol Pharmacol, 72 (4): 976-83. [PMID:17652444]
Subcommittee members:
Richard D. Ye (Chairperson)
François Boulay
Claes Dahlgren
Craig Gerard
Philip M. Murphy
Marc Parmentier
Mark Quinn
Charles N. Serhan |
Other contributors:
Magnus Bäck (Past contributor)
Nan Chiang (Past contributor)
Sven-Erik Dahlén (Past contributor)
Jeffrey Drazen (Past contributor)
Jilly F. Evans (Past contributor)
Huamei Fu Forsman
Helena Chengxue Qin
G. Enrico Rovati (Past contributor)
Takao Shimizu (Past contributor)
Ji Ming Wang (Past contributor)
Takehiko Yokomizo (Past contributor) |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Note that the data for FPR2 are also reproduced on the leukotriene receptor page under the heading "the FPR2/ALX receptor". It should also be noted that some of the specialized pro-resolving mediators are, in addition to the FPRs, also recognized by other GPCRs and they are present at very low levels as endogenous mediators for resolution of inflammation [52]. Since potency for different FPR agonists determined in many different research laboratories is dependent on the assay systems used, direct comparison of potency may be difficult for FPR agonists with anti-inflammatory and pro-resolving activities. For this reason, the pro-resolving lipid mediators are listed in one group and ligands with balanced agonistic activities are listed in another group for potency comparison. The biased signaling characteristics of some of the FPR agonists must be taken into consideration when their potencies are compared [21,35,60].
FPR1 has been reported to be the plague receptor on host immune cells [42] and as co-receptor for HIV [66], but these findings have to be further explored [20]. Some FPR2 ligands suggested to allosterically modulate receptor function activate the receptor in a classical but functionally selective mode [68], whereas allosteric modulatory effects of other compounds cause changes in receptor conformational states and receptor signaling [21]. The 3-D structure of FPR1/2 has been solved and the FPR2 structure reveals a large binding pocket that can accommodate ligands of different shapes and sizes for the generation of different conformational changes [33]. Studies have been conducted to explore the mechanisms by which primarily FPR2 mediates both pro-inflammatory and anti-inflammatory signaling in a ligand-dependent manner. It should be noted, however, that some of the not yet clearly identified anti-inflammatory signals, are generated by agonists that preferentially activate FPR1 [47]. The status of FPR2 dimerization is a determining factor for ligand-specific conformational changes leading to biased signaling [5]. There is also a report on ligand concentration-dependent dual modulation of FPR2 for receptor-activation vs. anti-inflammatory activities [19] , and ligand concentration-dependent modulation of FPR1 functions has also been reported [65]. FPR ligands are attractive candidates for promoting the resolution of inflammation, enhancing innate immune defense and tuning immune responses in inflammatory/auto-immune diseases and tumor microenvironments [6,64].